Πίνακας περιεχομένων:
- Βήμα 1: Απαιτείται υλικό:
- Βήμα 2: Σύνδεση υλικού:
- Βήμα 3: Κωδικός για μέτρηση θερμοκρασίας:
- Βήμα 4: Εφαρμογές:
Βίντεο: Παρακολούθηση θερμοκρασίας χρησιμοποιώντας MCP9808 και Arduino Nano: 4 βήματα
2024 Συγγραφέας: John Day | [email protected]. Τελευταία τροποποίηση: 2024-01-30 08:34
Το MCP9808 είναι ένας ψηφιακός αισθητήρας θερμοκρασίας υψηλής ακρίβειας mini 0,5 ° C μίνι μονάδα I2C. Είναι ενσωματωμένα με προγραμματιζόμενους από τον χρήστη καταχωρητές που διευκολύνουν τις εφαρμογές ανίχνευσης θερμοκρασίας. Ο αισθητήρας θερμοκρασίας υψηλής ακρίβειας MCP9808 έχει γίνει βιομηχανικό πρότυπο όσον αφορά τον παράγοντα μορφής και τη νοημοσύνη, παρέχοντας βαθμονομημένα, γραμμικοποιημένα σήματα αισθητήρων σε ψηφιακή μορφή, I2C.
Σε αυτό το σεμινάριο έχει αποδειχθεί η διασύνδεση της μονάδας αισθητήρα MCP9808 με το arduino nano. Για να διαβάσετε τις τιμές θερμοκρασίας, χρησιμοποιήσαμε βατόμουρο pi με προσαρμογέα I2c. Αυτός ο προσαρμογέας I2C καθιστά τη σύνδεση με τη μονάδα αισθητήρα εύκολη και πιο αξιόπιστη.
Βήμα 1: Απαιτείται υλικό:
Τα υλικά που χρειαζόμαστε για την επίτευξη του στόχου μας περιλαμβάνουν τα ακόλουθα στοιχεία υλικού:
1. MCP9808
2. Arduino Nano
3. Καλώδιο I2C
4. I2C Shield για Arduino nano
Βήμα 2: Σύνδεση υλικού:
Η ενότητα σύνδεσης υλικού εξηγεί βασικά τις συνδέσεις καλωδίωσης που απαιτούνται μεταξύ του αισθητήρα και του arduino nano. Η διασφάλιση των σωστών συνδέσεων είναι η βασική ανάγκη ενώ εργάζεστε σε οποιοδήποτε σύστημα για την επιθυμητή έξοδο. Έτσι, οι απαιτούμενες συνδέσεις είναι οι εξής:
Το MCP9808 θα λειτουργήσει μέσω I2C. Ακολουθεί το παράδειγμα διαγράμματος καλωδίωσης, που δείχνει πώς συνδέεται κάθε διασύνδεση του αισθητήρα.
Εκτός συσκευασίας, ο πίνακας έχει διαμορφωθεί για διεπαφή I2C, ως εκ τούτου συνιστούμε τη χρήση αυτής της σύνδεσης εάν είστε αλλιώς αγνωστικιστής. Το μόνο που χρειάζεστε είναι τέσσερα καλώδια!
Απαιτούνται μόνο τέσσερις συνδέσεις ακροδέκτες Vcc, Gnd, SCL και SDA και αυτές συνδέονται με τη βοήθεια καλωδίου I2C.
Αυτές οι συνδέσεις φαίνονται στις παραπάνω εικόνες.
Βήμα 3: Κωδικός για μέτρηση θερμοκρασίας:
Ας ξεκινήσουμε με τον κώδικα Arduino τώρα.
Κατά τη χρήση της μονάδας αισθητήρα με το Arduino, συμπεριλαμβάνουμε τη βιβλιοθήκη Wire.h. Η βιβλιοθήκη "Wire" περιέχει τις λειτουργίες που διευκολύνουν την επικοινωνία i2c μεταξύ του αισθητήρα και της πλακέτας Arduino.
Ολόκληρος ο κωδικός Arduino δίνεται παρακάτω για τη διευκόλυνση του χρήστη:
#περιλαμβάνω
// Η διεύθυνση MCP9808 I2C είναι 0x18 (24)
#define Addr 0x18
void setup ()
{
// Αρχικοποίηση επικοινωνίας I2C ως MASTER
Wire.begin ();
// Αρχικοποίηση Σειριακής Επικοινωνίας, ρυθμισμένος ρυθμός baud = 9600
Serial.begin (9600);
// Έναρξη μετάδοσης I2C
Wire.beginTransmission (Addr);
// Επιλέξτε καταχωρητής διαμόρφωσης
Wire.write (0x01);
// Λειτουργία συνεχούς μετατροπής, Προεπιλογή ενεργοποίησης
Wire.write (0x00);
Wire.write (0x00);
// Διακοπή μετάδοσης I2C
Wire.endTransmission ();
// Έναρξη μετάδοσης I2C
Wire.beginTransmission (Addr);
// Επιλέξτε καταχωρητής ανάλυσης
Wire.write (0x08);
// Ανάλυση = +0.0625 / C
Wire.write (0x03);
// Διακοπή μετάδοσης I2C
Wire.endTransmission ();
}
κενός βρόχος ()
{
ανυπόγραφα δεδομένα int [2];
// Ξεκινά την επικοινωνία I2C
Wire.beginTransmission (Addr);
// Επιλέξτε μητρώο δεδομένων
Wire.write (0x05);
// Διακοπή μετάδοσης I2C
Wire.endTransmission ();
// Ζητήστε 2 byte δεδομένων
Wire.requestFrom (Addr, 2)?
// Διαβάστε 2 byte δεδομένων
// temp MSB, temp LSB
εάν (Wire.available () == 2)
{
δεδομένα [0] = Wire.read ();
δεδομένα [1] = Wire.read ();
}
// Μετατρέψτε τα δεδομένα σε 13-bit
int temp = ((δεδομένα [0] & 0x1F) * 256 + δεδομένα [1]);
εάν (θερμοκρασία> 4095)
{
θερμοκρασία -= 8192;
}
float cTemp = temp * 0,0625;
float fTemp = cTemp * 1.8 + 32;
// Έξοδος δεδομένων στην οθόνη
Serial.print ("Θερμοκρασία σε Κελσίου:");
Serial.println (cTemp);
Serial.println ("C");
Serial.print ("Θερμοκρασία σε Φαρενάιτ:");
Serial.println (fTemp);
Serial.println ("F");
καθυστέρηση (500)?
}
Στη βιβλιοθήκη σύρματος, το Wire.write () και το Wire.read () χρησιμοποιούνται για την εγγραφή των εντολών και την ανάγνωση της εξόδου του αισθητήρα.
Serial.print () και Serial.println () χρησιμοποιούνται για την εμφάνιση της εξόδου του αισθητήρα στη σειριακή οθόνη του Arduino IDE.
Η έξοδος του αισθητήρα εμφανίζεται στην παραπάνω εικόνα.
Βήμα 4: Εφαρμογές:
Ο αισθητήρας ψηφιακής θερμοκρασίας MCP9808 έχει διάφορες εφαρμογές σε βιομηχανικό επίπεδο, οι οποίες ενσωματώνουν βιομηχανικούς καταψύκτες και ψυγεία μαζί με διάφορους επεξεργαστές τροφίμων. Αυτός ο αισθητήρας μπορεί να χρησιμοποιηθεί για διάφορους προσωπικούς υπολογιστές, διακομιστές καθώς και άλλους περιφερειακούς υπολογιστές.
Συνιστάται:
Παρακολούθηση θερμοκρασίας χρησιμοποιώντας MCP9808 και Raspberry Pi: 4 βήματα
Παρακολούθηση θερμοκρασίας με χρήση MCP9808 και Raspberry Pi: Το MCP9808 είναι ένας ψηφιακός αισθητήρας θερμοκρασίας υψηλής ακρίβειας mini 0,5 ° C μίνι μονάδα I2C. Είναι ενσωματωμένα με προγραμματιζόμενους από τον χρήστη καταχωρητές που διευκολύνουν τις εφαρμογές ανίχνευσης θερμοκρασίας. Ο αισθητήρας θερμοκρασίας υψηλής ακρίβειας MCP9808 έχει γίνει βιομηχανία
Παρακολούθηση θερμοκρασίας και υγρασίας DHT χρησιμοποιώντας το ESP8266 και την πλατφόρμα IoT AskSensors: 8 βήματα
Παρακολούθηση θερμοκρασίας και υγρασίας DHT χρησιμοποιώντας το ESP8266 και την πλατφόρμα IoT της AskSensors: Σε προηγούμενο εκπαιδευτικό, παρουσίασα έναν οδηγό βήμα προς βήμα για να ξεκινήσετε με το ESP8266 nodeMCU και την πλατφόρμα IoT AskSensors. Σε αυτό το σεμινάριο, συνδέω έναν αισθητήρα DHT11 στον κόμβο MCU. Το DHT11 είναι μια κοινά χρησιμοποιούμενη θερμοκρασία και υγρασία
Παρακολούθηση θερμοκρασίας και υγρασίας χρησιμοποιώντας το ESP-01 & DHT και το σύννεφο AskSensors: 8 βήματα
Παρακολούθηση θερμοκρασίας και υγρασίας χρησιμοποιώντας το ESP-01 & DHT και το σύννεφο AskSensors: Σε αυτό το εκπαιδευτικό πρόγραμμα θα μάθουμε πώς να παρακολουθούμε τη θερμοκρασία και τις μετρήσεις υγρασίας χρησιμοποιώντας τον πίνακα IOT-MCU/ESP-01-DHT11 και την πλατφόρμα IoT της AskSensors . Επιλέγω τη μονάδα IOT-MCU ESP-01-DHT11 για αυτήν την εφαρμογή επειδή
Παρακολούθηση θερμοκρασίας και υγρασίας χρησιμοποιώντας SHT25 και Arduino Nano: 5 βήματα
Παρακολούθηση θερμοκρασίας και υγρασίας χρησιμοποιώντας SHT25 και Arduino Nano: Δουλέψαμε πρόσφατα σε διάφορα έργα που απαιτούσαν παρακολούθηση θερμοκρασίας και υγρασίας και στη συνέχεια συνειδητοποιήσαμε ότι αυτές οι δύο παράμετροι παίζουν πραγματικά κεντρικό ρόλο στην εκτίμηση της αποδοτικότητας λειτουργίας ενός συστήματος. Και οι δύο στο indus
Παρακολούθηση θερμοκρασίας χρησιμοποιώντας MCP9808 και σωματίδιο φωτονίου: 4 βήματα
Παρακολούθηση θερμοκρασίας χρησιμοποιώντας το MCP9808 και το Parton Photon: Το MCP9808 είναι ένας ψηφιακός αισθητήρας θερμοκρασίας υψηλής ακρίβειας ± 0,5 ° C μίνι μονάδα I2C. Είναι ενσωματωμένα με προγραμματιζόμενους από τον χρήστη καταχωρητές που διευκολύνουν τις εφαρμογές ανίχνευσης θερμοκρασίας. Ο αισθητήρας θερμοκρασίας υψηλής ακρίβειας MCP9808 έχει γίνει βιομηχανία